收集陕西中南部1970年以来的多期精密水准测量数据,用基于GPS垂直运动速率约束的动态平差方法获得区域垂直运动速度场。分析表明,地壳垂直运动总体表现为山地、高原相对隆升,盆地相对下沉。相对于关中盆地,西部秦岭、陇山上升速率为4~5 mm/a,北秦岭造山带为2~3 mm/a,盆地北部的鄂尔多斯南缘为3~4 mm/a;相对于北秦岭,汉中盆地下沉速率为1.0 mm/a左右,安康等北大巴山裂谷下沉速率接近20 mm/a;秦岭北缘断裂垂直滑动速率为1.3~1.8 mm/a,华山山前断裂为2.0~2.8 mm/a,渭河断裂小于1.0 mm/a,渭河盆地北缘断裂为1.0~2.5 mm/a,南部断裂为0.7~1.1 mm/a。
对比两种计算RMS值的方法,结合误差概率统计给出结果的误差概率分布。在使用有限脉冲响应(FIR)带通滤波器进行滤波并计算RMS值的过程中,滤波器窗口函数和阶数是影响计算结果误差的主要因素,其中阶数的作用更大。通过计算功率谱密度(PSD)反算RMS值的误差主要受pwelch函数的窗口函数类型、窗口长度及重叠率等参数影响,其中窗口长度作用更大。从同等误差水平的概率分布看,在合理设置参数的前提下,使用PSD反算RMS值的方法更优。
为提高九寨沟2017-08-08 MS7.0地震的InSAR同震形变场精度,厘清发震断层的构造形态及形成机制,对形变区相干系数进行统计分析并确定相干性阈值,利用GACOS对形变场进行大气校正,再根据余震分布和地质背景确定发震断层的基本形状,最后基于Okada弹性半空间位错模型反演发震断层的滑动分布。改正后的InSAR同震形变场显示,视线向最大下沉为25 cm,最大抬升为10 cm,分别位于震中西北和东南,形变长轴为北西向,主要形变区位于发震断层西部。改正后的InSAR形变场残差均方根较改正前小,最大滑动量为0.9 m,平均滑动角为-0.5°,破裂主要集中在地下1~20 km范围内,矩震级为6.5,与USGS和GCMT等机构的结果一致。研究表明,利用GACOS改正九寨沟InSAR同震形变场对提高形变场精度具有一定的作用,反演断层滑动分布的结果较改正前差别不明显,发震断层的属性与虎牙断裂北段的性质基本一致。结合余震重定位结果可以推断,发震断层为虎牙断裂的北向延伸部分,此次地震事件为巴颜喀拉地块南东向扭转与华南地块碰撞的结果,中下地壳粘性流体的差异分布是导致虎牙断裂倾角变化的主要原因。
采用有限元方法,针对青藏高原东南缘建立更细致、更精确的三维有限元弹性模型。选取9种不同的应力边界条件,分别进行优化分析后处理,将对应台站形变模拟值与GPS实测值进行误差分析,最终选取最佳方案作为古构造应力场。结果表明,青藏高原东南缘4 Ma BP的古应力场主要起源于中国大陆周围板块的相互作用,特别是印度板块NNE向强烈碰撞作用,成为中国大陆尤其是西南部青藏高原地区构造应力场最主要的动力来源,控制各个块体相互作用的方式和运动格局。青藏高原东南缘古应力场主要包括几个力源:西北部青藏高原侧向挤压造成的WE向应力约105 MPa;西南部直接来自于印度板块的NE-WS向应力约70 MPa;南部NS向作用力33 MPa;东南部扬子块体侧向NW-SE阻挡力56 MPa;北东部受扬子块体强烈EW向阻挡力90 MPa。这些力源共同作用于青藏高原东南缘,形成现今复杂应力场。
以1998~2007年和2009~2017年中国大陆水平GPS速度场为约束,基于块体-位错模型,研究2008年汶川地震前后红河断裂运动特征。结果表明,汶川地震后红河断裂平均右旋走滑速率约为4.5 mm/a,其北段走滑速率增大明显,中段次之,而南段明显减弱;倾滑速率北段减弱明显,中段和南段有所减弱。汶川地震后红河断裂闭锁程度和滑动亏损中、北段都有所增加,南段减弱较大;近期红河断裂滑动亏损北段达到10 mm/a以上,中段也在5~8 mm/a,平均闭锁深度在20 km左右。分析认为,汶川地震对红河断裂中、北段影响较小,南段影响较大。
利用东北地区近几年流动重力观测数据,分析前郭5.8级震群周边重力点值的时序变化特征,并基于重力段差变化对东北地区整体和局部重力变化引入能够反映异常显著性程度的指标量G和C值,最后对前郭5.8级震群前的重力场动态变化作三维密度反演。结果表明:1)前郭5.8级震群发震构造两侧的局部重力变化具有较明显的差异性,其变化趋势可作为识别构造活化或解耦运动的标志;2)显著性指标量G和C值能够为地震重力前兆的定量描述提供新思路;3)震前重力变化的反演结果显示地震发生在质量运移的过渡区域,垂向反演结果对本次地震的震源深度有一定的揭示意义。
介绍TPXO、FES、Chinatide、MIKE Global Tide、Utide等典型海潮模型,总结归纳其同化潮汐数据来源和最新的海洋地形数据,利用我国沿岸长期验潮站以外的26个中短期潮位观测站评估TPXO等海潮模型预报精度。结果表明,全球海潮模型对我国沿海M2分潮的预报精度普遍较低,且主导了几种海潮模型在中国海域的整体预报精度;相比MIKE Global Tide和TPXO7.2,TPXO8、TPXO_Yellow Sea 2010和TPXO_China&Ind模型在我国沿海的预报精度更高。
对比青藏高原及天山地区所有湖泊内CryoSat-2基线C版本二级产品(SIR_SIN_L2I)和ICESat测高结果发现,它们之间存在一个多达几十米的系统性偏差,这种偏差限制了多源测高数据的联合研究,必须加以消除。从一级数据出发,利用经典的重跟踪方法重新获得湖面高程,能很好地消除这个偏差。研究发现,当前的二级产品在生成过程中使用了错误的窗口延迟参数,从而导致该系统性偏差。因此,CryoSat-2的SARIn模式二级产品不能直接用于多源数据的联合分析,需要对一级数据重跟踪或直接在二级数据上加一个偏差改正。
针对GPS可降水量时间序列具有非线性、非平稳性的特征,研究一种基于小波分解(WD)、遗传算法(GA)和最小二乘支持向量机(LSSVM)的GPS可降水量短临预报方法。先采用小波分解将GPS可降水量时间序列分解成便于预报的低频分量和高频分量;然后利用遗传算法优化LSSVM参数,进而对各分量建立预报模型;再将各分量预报结果进行叠加重构得到最终预报结果。选取两组数据进行实验,并将预报结果分别与LSSVM和遗传小波神经网络(GA-WNN)预报结果进行对比。结果表明,该组合模型具有良好的泛化能力,可有效解决神经网络易陷于局部极小的问题,提高了全局预报精度。
采用线性回归和最小二乘法拟合建立无线电探空可降水量(RS-PWV)与GPS对流层延迟(GPS-ZTD)、地面温度及大气压之间的直接转换模型,并将直接转换模型得到的PWV分别与RS-PWV及GPS反演得到的可降水量(GPS-PWV)进行比较。结果表明,RS-PWV与GPS-ZTD之间存在良好的线性关系,相关系数达0.927 6;RS-PWV与4阶拟合温度和大气压呈现较好的相关性,相关系数分别为0.640 1和-0.626 3;基于ZTD的单阶单因子模型PWV与GPS-PWV的相关系数达到0.969 9;基于ZTD、温度及大气压的单阶多因子模型PWV比基于ZTD的单阶单因子模型PWV精度明显提高,RMS从4.3 mm提高到3.3 mm。
以2015年GGOS Atmosphere格网产品和探空站资料为参考值,评价GPT2w模型在中国地区计算对流层加权平均温度Tm的精度和适用性。结果表明:1)在中国地区,1°分辨率的GPT2w模型精度和稳定性优于5°分辨率,且GPT2w模型表现出显著的系统性误差;2)Tm的bias和RMS误差均具有明显的时空变化特性,季节变化表现为春冬季较大、夏季较小,空间变化上RMS误差表现为随纬度增加而变大;3)受地形起伏和Tm日周期变化影响,Tm在中国西部和东北地区误差较大。
给出顾及高阶电离层延迟改正的双差定位模型,探讨中国区域VTEC的时空变化规律,分析高阶电离层延迟对L3观测值的影响。利用41个陆态网测站2015年全年的GNSS数据,基于Bernese 5.2软件的双差定位技术,系统研究高阶电离层延迟对中国区域双差定位的影响及其时空分布规律。结果表明,高阶电离层延迟对中国区域双差定位的影响与测站网型结构相关,明显存在0.5 a的周期变化,影响年均值大小为0~2 mm,且具有方向性差异,对高纬度测站的影响有向北偏移趋势,对低纬度测站的影响有向南偏移趋势。
介绍北斗广域差分服务新增的分区综合改正数的原理及使用方法,并采用共天线方式进行连续7 d的实际测试。结果显示,未升级过的单频终端伪距定位精度水平方向为2 m,高程方向为3 m,单频分区定位精度水平方向为0.55 m,高程方向为0.80 m;B1B2双频动态分区定位精度水平方向为0.30 m,高程方向为0.55 m。对观测数据进行事后解算,结果显示,在改正信息连续、稳定的情况下,双频动态定位精度水平方向为0.35 m,高程方向为0.50 m;静态模式定位精度水平方向为0.12 m,高程方向为0.22 m。不同分区改正信息取得的静态定位收敛结果之间存在微弱差异,但对定位结果的RMS影响不大。
研究GPS、GLONASS和BDS三系统组合精密单点定位(PPP),包括函数模型、对流层延迟参数和差分码偏差(DCB)参数的解算方法。利用C++语言编制3系统组合PPP程序,分析MEGX网12个连续跟踪站1周观测数据,结果表明,无电离层组合模型和非组合模型的收敛速度和定位精度相当,同一测站在不同时间的收敛速度无明显差异,但非组合模型采用先验电离层信息约束可提高定位的收敛速度。多系统组合定位能改善PDOP值,提高收敛速度和定位精度;3系统组合PPP的水平坐标精度约3 cm,高程精度约5 cm,优于3个系统单独定位或2个系统组合定位的精度;当卫星遮挡较大时,多系统PPP结果较单系统更为稳定。