利用GRACE重力卫星数据获取智利地区长期重力变化,提取特征点重力变化时间序列,分析2010 年智利MW8.8地震震前、同震及震后的重力变化,并将GRACE观测到的同震重力变化与球体位错理论模拟结果进行对比分析。结果表明,地震造成发震断层上、下盘显著的重力正负变化;特征点重力变化时序均清晰地揭示出地震造成的重力变化跃迁现象及震后3个强余震的异常信号,特别是震源域特征点重力在地震前2007~2010年呈现出“减小-增加-减小-增加-发震”的变化特征;GRACE观测到的同震重力变化与球体位错理论模拟结果在量级和分布形态上具有较好的一致性;地震不同阶段发震断层两盘重力变化亦有所差异,且受震后地层粘滞性效应影响,发震断层邻域重力变化呈持续性正负变化趋势。
利用多测站实测GNSS观测数据,模拟四周遮挡(城市环境)、单侧遮挡(峡谷环境)和顶空遮挡(大型桥梁路基环境)3种遮挡环境,从可用卫星数、PDOP值、可用历元率、定位精度和收敛时间5个方面,综合分析多系统PPP技术的定位服务效能。结果显示,相比GPS单系统PPP定位结果,在无遮挡环境下,四系统融合PPP技术在可用卫星数、PDOP值、可用历元率、定位精度和收敛时间方面分别改进300%、40%、2%、20%和50%;在遮挡环境下,分别改进300%、60%、25%、39%和52%。
因GNSS系统间观测噪声、轨道精度的差异,采用经验权比进行组合定位难以得到最优结果。基于此,在GPS/GLONASS/BDS组合定位中引入Helmert方差分量估计,对GPS/GLONASS/BDS组合单点定位和基线解算中各系统观测值进行合理定权。实验表明,采用该方法确定的伪距观测值最佳权比为5∶1∶1,相位观测值最佳权比为1∶1∶1,有效提高了GPS/GLONASS/BDS组合定位的精度和可靠性。
提出基于单观测值的Kalman滤波快速计算方法,并引入共享存储并行编程(OpenMP)技术实现协方差快速更新,从而实现非差GPS卫星钟差的快速实时计算。均匀选取55个IGS参考站,计算2017-03-20~03-30采样率为60 s的卫星钟差。与IGS事后30 s钟差相比,两者具有很好的一致性,RMS互差优于0.5 ns。选取未参与钟差解算的10个IGS参考站进行精密单点定位,结果表明,实时静态PPP水平方向精度优于2 cm,高程方向精度为2~4 cm;实时动态PPP水平方向精度为2~4 cm,高程方向精度为4~6 cm,能够满足实时PPP的精度要求。该方法在主频1.2 GHz服务器上8线程并行模式下单历元耗时4 s,相比串行模式效率提升1/3。
针对传统对流层延迟模型精度较低的缺点,基于神经网络模型误差补偿技术,在Hopfield模型基础上建立一个适用于北半球的高精度融合模型。以Wyoming大学提供的2010年全球120多个观测台站的气象探空数据精密解算的天顶对流层延迟(ZTD)作为近似“真值”,分析比较Hopfield模型、传统BP模型和融合模型的计算精度。结果表明,Hopfield模型的均方根误差(RMSE)为35.31 mm,传统BP模型为30.34 mm,融合模型为23.31 mm。
通过测试选取合适的时间序列长度,分析地磁指数,排除磁暴与地磁活动的影响,针对电离层TEC值的周期性变化及其随纬度的不均匀分布规律,采用季节性时间序列模型SARIMA和指数平滑模型Holt-Winters,利用IGS中心提供的TEC格网数据,对北半球不同纬度的48个区域进行预报,并通过定义日均相对精度和均方根误差来评定预报精度。结果表明,3种模型均能较好地反映电离层TEC值的周期性变化,但均方根误差随纬度的降低总体呈现增长趋势,且在北纬25°与55°表现为极大值,在北纬45°表现为极小值。
利用四川地区58个CORS站2012~2014年的观测数据,使用GAMIT软件反演其大气水汽含量,并分析水汽含量的时空分布特征和变化趋势。结果显示,四川地区水汽含量的空间分布具有东多西少的特征。通过多元线性回归分析方法和PCA法得出水汽含量的分布特征与该地区的地形地势的线性关系。以CHDU、YBIN和HONY站为例,利用改进的经验模态分解结合频谱分析的方法,得到水汽含量的多周期特性。结果显示,3个站存在多个水汽含量的循环周期。
选取FES2004、EOT11a、TPXO7.2和Chinasea2010等4个海潮模型,首先通过矢量差评价不同海潮模型的潮波参数差异,然后利用中国大陆构造环境监测网络23个沿海测站的GNSS连续观测数据,通过计算不同海潮模型改正前后GNSS时间序列的wRMS,评价基于不同海潮模型的海潮负荷位移改正的有效性。结果表明,不同海潮模型的潮波参数存在mm级差异,且沿海区域差异远比内陆区域显著。此外,海潮负荷改正对中国沿海区域测站坐标时间序列wRMS影响较大,大部分测站坐标时间序列进行海潮负荷改正后,wRMS减小10%~70%;改正后wRMS改善幅度与测站所属区域有关,东海沿岸测站wRMS的改善较渤海、黄海和东海沿岸测站更显著,可减小50%以上;wRMS改善程度的模型间差异为1%~2%,其中基于FES2004模型的改正对序列wRMS的影响最大,可达67.5%。
具有强震孕育能力的龙门山前山断裂南段附近地区的强震事件仅有以史料记载的1327年天全地震和仪器记载的1970年大邑6.2级、2013年芦山7.0级地震,这些地震均引发大量的崩塌、滑坡。调查对比发现,沿龙门山断裂南段大川-双石断裂沿线的典型地段分布的历史地震崩塌范围和运移距离都大于芦山地震所触发的崩塌,崩塌的方量和粒径表现为南西往北东逐步减少、减小的趋势。崩塌调查、崩塌体埋藏物和表生地衣相对年代学测试结果、史料记载与震例对比和地震有感半径与震级经验公式计算综合表明,1327年天全地震引起的地面震动大于芦山地震,是天全县“大岩崩”地名和双石镇“晒经书”景观形成的主要原因,1327年天全地震的震中可能位于龙门山断裂南段大川-双石断裂附近的天全响水溪一带,震中烈度≥Ⅸ度,震级≥7.0。
利用依兰-伊通断裂带北部地区1977年、1991年和2015年3期精密水准数据,采取伪逆基准下的线性动态运动模型进行平差,并归算到选取的基准点,分别获取该区域2期相对速率场(1977~1991年和1991~2015年)。前一期速率场表明,大致以依兰-伊通断裂带为界,该区域长白山北部相对于小兴安岭南段隆升,最大相对速率为7.51 mm/a;后一期速率场表明,整个依兰-伊通断裂带北部地区相对速率较小,最大相对速率仅为3.4 mm/a,该区域趋向于整体性的继承性运动,断裂带两侧相对运动明显减弱。
选取甘肃、青海和宁夏区域测震台网19个宽频带数字台站的地震波形,采用CAP震源机制解方法,研究2016-01-21青海省门源县MS6.4地震,得到其震源机制解和最佳震源深度。反演结果显示,最佳双力偶解为,节面Ⅰ:走向143°,倾角40°,滑动角71°,节面Ⅱ:走向347.2°,倾角52.6°,滑动角105.3°,地震矩震级为MW5.9,最优深度解为7.7 km,与其他结果(CENC、IGP-CEA、Harvard)基本一致。利用滑动时窗相关法提取Pn、sPn震相,再利用其到时差测定震源深度为8.5 km,与CAP结果基本一致,验证了该方法的可行性。
利用甘肃省数字地震台网记录的波形数据,采用Atkinson多台多震计算非弹性衰减系数方法和Moya遗传算法,计算2016年门源MS6.4地震震前3 a震源区及周围地区157个ML2.0以上地震的应力降参数,应力降值分布在0.02~10.86 MPa,平均值为1.67 MPa。结果显示,应力降高值区主要集中在皇城-双塔断裂与冷龙岭断裂之间,与研究区内中强地震活动范围具有很强的一致性;2013年肃南-门源交界MS5.1地震前数月开始出现显著的应力降高值,震后逐渐下降,直到2016年门源MS6.4地震发生前,应力降总体处于较低水平,但在MS6.4地震前半年左右,应力降月均值出现两次高值异常,与门源地震具有一定的对应关系。
从全球CMT目录中选取南美板缘1976-01-01~2016-12-24期间M≥7.0浅源地震的震源机制解资料(共36次),应用Coulomb3.3软件计算先前地震在后续地震断层面上产生的静态库仑应力变化,探讨先前地震对后续地震是否有静态应力触发作用。结果表明,受到先前地震触发作用的地震数目为11个(以0.1 bar为触发阈值),触发地震占比为31.4%,受到抑制的地震数目为7个,不确定的地震数目为17个,静态库仑应力变化为正的地震数目为22个,占比为62.9%,表明1976年以来南美板缘强震间存在一定的应力触发作用。
利用2014~2015年湖北数字地震台网30个子台记录的远震波形资料,用频率域反褶积方法提取接收函数,由H-Kappa、CCP叠加方法反演得到各台站下方地壳厚度、泊松比及剖面AA′。结果表明:1)湖北地区地壳厚度总体趋势是西厚东薄,鄂西北、西南地区地壳厚度在45~55 km左右,鄂东地区地壳厚度在30~35 km左右;2)湖北地区泊松比值总体变化不大(0.23~0.27),说明这一地区岩石可能以中度组分为主;3)AA′剖面中出现“楼梯状”Moho面,结合相关文献分析,在武当山地区下方地壳的榴辉岩发生相变,使得相变后的下地壳密度改变而发生拆沉作用,因此鄂西地区地壳厚度发生陡变。
首次利用全台网多台垂直摆倾斜仪观测数据检测地球自由振荡。2011年日本MW9.0大地震发生后,43台仪器记录到其所激发的自由振荡信号。谱分析结果显示,垂直摆倾斜仪检测到了低频段(1~5 mHz)地球自由振荡振型,并且在超低频部分(<1.5 mHz)仍然还有较高的信噪比。选取43个台站中观测质量较好的36个台站数据进行叠积以增强信号,可以探测到一些非常微弱的模态,最终得到频率高于4.7 mHz的所有零阶球型振荡0S3~0S38(其中7个振型的观测频率与理论值的偏差近似为0)和环型振荡0T3~0T28几乎所有振型,此外还检测到21个谐频振型。